Communications: Comparison of Two Methods of Oxygen Supplementation for Enhancing Water Quality in Fish Culture

1994 ◽  
Vol 56 (2) ◽  
pp. 130-134 ◽  
Author(s):  
Speros K. Doulos ◽  
Anthony J. Garland ◽  
John R. Marshall ◽  
Mark D. White
Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3418
Author(s):  
Bing Li ◽  
Rui Jia ◽  
Yiran Hou ◽  
Chengfeng Zhang ◽  
Jian Zhu ◽  
...  

In aquaculture, constructed wetland (CW) has recently attracted attention for use in effluent purification due to its low running costs, high efficiency and convenient operation,. However, less data are available regarding the long-term efficiency of farm-scale CW for cleaning effluents from inland freshwater fish farms. This study investigated the effectiveness of CW for the removal of nutrients, organic matter, phytoplankton, heavy metals and microbial contaminants in effluents from a blunt snout bream (Megalobrama amblycephala) farm during 2013–2018. In the study, we built a farm-scale vertical subsurface flow CW which connected with a fish pond, and its performance was evaluated during the later stage of fish farming. The results show that CW improved the water quality of the fish culture substantially. This system was effective in the removal of nutrients, with a removal rate of 21.43–47.19% for total phosphorus (TP), 17.66–53.54% for total nitrogen (TN), 32.85–53.36% for NH4+-N, 33.01–53.28% NH3-N, 30.32–56.01% for NO3−-N and 42.75–63.85% for NO2−-N. Meanwhile, the chlorophyll a (Chla) concentration was significantly reduced when the farming water flowed through the CW, with a 49.69–62.01% reduction during 2013–2018. However, the CW system only had a modest effect on the chemical oxygen demand (COD) in the aquaculture effluents. Furthermore, concentrations of copper (Cu) and lead (Pb) were reduced by 39.85% and 55.91%, respectively. A microbial contaminants test showed that the counts of total coliform (TC) and fecal coliform (FC) were reduced by 55.93% and 48.35%, respectively. In addition, the fish in the CW-connected pond showed better growth performance than those in the control pond. These results indicate that CW can effectively reduce the loads of nutrients, phytoplankton, metals, and microbial contaminants in effluents, and improve the water quality of fish ponds. Therefore, the application of CW in intensive fish culture systems may provide an advantageous alternative for achieving environmental sustainability.


2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Ervany Eshmat N, Abdul Manan

Abstract The humpback grouper (Cromileptes altivelis) is one of the fishery commodities with high economic value in both local and international markets. The price of humpback grouper can reach Rp. 200,000 - Rp. 400,000 / kilogram in the local market. The humpback grouper is potentially to be developed in most coastal areas of Indonesia. The conditions of water quality have a very important role for the success of fish culture of humpback grouper. To that end, monitoring and management of water quality are necessary in fish culture. The purpose of this case study is to determine the water quality conditions on humpback grouper culture in BBAP, Situbondo. The study was conducted on 16 January until 16 February 2012. The study method use descriptive method. From the results of water quality analysis, the water in humpback grouper broodstock ponds (I1 and I2) is no smell, no colour water, temperature 26.1-30 oC, salinity 27-35 ppt, dissolved oxygen 3.3-3.9 ppm, ammonia levels <0.001-0.22 ppm, nitrite levels 0.0075-0.085 ppm, alkalinity 110-120 ppm and pH 7.94-8.18. The water in humpback grouper hatchery ponds (B1 and B2) is no smell, green colour water, temperature 26.7-29.3 oC, salinity 27-34 ppt, dissolved oxygen 2.7-3.7 ppm, ammonia levels 0.0781-0.28 ppm, nitrite levels 0.0225-3.3305 ppm, alkalinity 94-126 ppm, and pH 7.14-7.81.


2010 ◽  
Vol 71 ◽  
pp. S3-S9 ◽  
Author(s):  
Xiuna Zhu ◽  
Daoliang Li ◽  
Dongxian He ◽  
Jianqin Wang ◽  
Daokun Ma ◽  
...  

2005 ◽  
Vol 71 (5) ◽  
pp. 972-977 ◽  
Author(s):  
Irzal EFFENDIE ◽  
Kukuh NIRMALA ◽  
Umar HASAN SAPUTRA ◽  
Agus Oman SUDRAJAT ◽  
Muhammad ZAIRIN ◽  
...  

Abstract.—A water filtration and ozonation system was recently installed to treat creek water used to culture species of concern at the U.S. Fish and Wildlife Service’s Northeast Fishery Center, Lamar National Fish Hatchery (NFH). Past experience with fish culture indicates that the following bacterial pathogens are endemic to the creek water supply: <em>Aeromonas salmonicida</em>, <em>Yersinia ruckeri</em>, <em>Flavobacterium columnaris</em>, and <em>Flavobacterium psychrophilia</em>. Water samples were collected from sites located before and after filtration and ozonation and examined for culturable bacteria. Variable operation of the filtration/ozonation system was used to examine (1) the effect of microscreen filtration (i.e., using drum filters containing 37-μm sieve panels) on ozone inactivation of bacterial microorganisms, (2) the effect of dissolved ozone contact times on inactivation of bacterial microorganisms, and (3) the effect of water quality fluctuations on the dissolved ozone demand measured during the course of these tests. Inactivation exceeded 98% for all bacteria when ozone <em>C*t </em>values were about 1.0 and reached 100% at 21.3, regardless of water quality parameters or implementation of microscreen filtration. These results indicate that the use of ozonation to treat surface water supplies used for fish culture facilities will effectively inactivate the majority of bacteria entering the system and will likely serve to prevent introduction of bacteria that can be pathogenic to fish.


Aquaculture ◽  
1992 ◽  
Vol 103 (2) ◽  
pp. 123-134 ◽  
Author(s):  
W.J. Ng ◽  
Kevin Kho ◽  
L.M. Ho ◽  
S.L. Ong ◽  
T.S. Sim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document